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WALL LAYER MICROTURBULENCE PHENOMENOLOGY AND A MARKOV 
PROBABILITY MODEL FOR ACTIVE ELECTROMAGNETIC CONTROL OF 

TURBULENT BOUNDARY LAYERS IN AN ELECTRICALLY CONDUCTING MEDIUM 

1. INTRODUCTION 

In most underwater applications, performance improvement is limited by the onset or 
presence of turbulence. Aside from some results that can be derived through dimensional 
reasoning, it is still not possible to solve from the basic equations a high-Reynolds-number 
turbulent flow having even the simplest boundary conditions. This inability to accurately predict 
the parameters of turbulent boundary layers severely limits technological advancement in vehicle 
dynamics, including the performance of underwater propulsors and sensors. 

Over the past 20 years, significant advances in flow visualization, instrumentation, and 
signal processing have provided a wealth of knowledge and insight into turbulent boundary flows. 
As has been pointed out by Cantwell (1981), there is a growing realization that turbulent flows 
are not totally random. The turbulence has been found to have a quasi-deterministic, repeatable 
pattern, as well as statistics that are characterized by a remarkable degree of order. The 
turbulence has been found to be composed of several identifiable events with unique 
characteristics; these events can be termed "microturbulent" events and their product can be 
termed "microturbulence."   Progress in incorporating a structural model of microturbulent events 
into practical engineering methods, however, has been slow, and no one has yet explored how this 
ordered structure is to be connected with a truly predictive methodology. The investigation 
reported here attempts to make this connection and uses seawater electromagnetic turbulence 
control as a convenient practical application to test the methodology. Other turbulence control 
techniques could also benefit from this methodology. The overall intent is to present a new 
overview of the organized nature of turbulence and a road map for its control. 

Turbulent boundary layer drag is dominated by the turbulence production process, which in 
turn is characterized by identifiable, discrete microturbulent events that have been established by 
numerous investigators in the past. The discrete microturbulent events are summarized in section 
2 of this report, where the physical scales and sequential order of events is given in terms of the 
inner and outer scales of the boundary layer. Section 3 discusses the scaling relationships of these 
events and proposes using Lorentz pressure gradients to control the microturbulence. The 
complete sequence of microturbulent events occurs on a moving frame and is conceptualized as 
the basis of the proposed probabilistic control process. Given natural evolution, i.e., no external 
influence, the transition probability from one event to the next is consistent with the limiting state 
probabilities, with little physics to reverse the transition. When a Lorentz pressure gradient is 
imposed, the transition probability is modified. As proposed here, the concept of electromagnetic 
control of turbulence using Lorentz pressure gradients is directed at affecting the frequency of 
occurrence of these microturbulent events in a manner that reduces the transition probability 
toward the mature end of discrete events, thereby interrupting the turbulence production cycle, 



reducing turbulence production and Reynolds stresses, and consequently reducing overall drag. A 
probabilistic model of the dependent microturbulent events is described in section 4. 

Although there are global indicators of the Lorentz pressure gradient effects, to eventually 
provide real-time active control of the turbulent boundary layer, one must find local indicators 
that instantaneously characterize the Lorentz effect. Several indicators based on the wall shear 
stress and wall pressure fluctuations are described in section 4. Section 5 describes one method 
for implementing electromagnetic control of turbulence. Section 6 presents conclusions and 
recommendations. 



2. WALL LAYER MICROTURBULENCE PHENOMENOLOGY 

While a large database on wall layer microturbulence exists, the database has not been 
organized and presented in a comprehensive and coherent framework that lends itself to practical 
applications. This section offers a consolidated summary of microturbulence phenomenology with 
this goal in mind. 

2.1 NEAR-WALL MICROTURBULENCE PHENOMENOLOGY 

2.1.1 Sequence of Microturbulent Events 

As is well known, Kim et al. (1971) found a quasi-periodic, three-stage sequence of events 
in the near-wall region of turbulent boundary layers and called the process bursting. This bursting 
is a continuous chain of events starting from a relatively quiescent wall flow; it involves the slow 
lifting of a low-speed streak, the formation of a relatively large, rapidly growing oscillatory 
motion, and relatively chaotic fluctuations called breakup. Kim et al. (1971) also found that low- 
speed streak-lifting is triggered by large disturbances (implying " away from the wall") already 
present in the flow and, hence, preceding the liftup. Corino and Brodkey (1969) found an element 
of accelerated fluid farther away from the wall that occurred after the appearance of a low-speed 
wall streak; they called this phenomenon sweep. Corino and Brodkey suggested that the 
interaction between the sweep and the low-speed streaks is fundamental to the ejection process. 
(Although it is recognized that streaks and near-wall longitudinal vortices are distinct dynamic 
elements, in this report the two terms are used interchangeably.) 

Offen and Kline (1974) concluded that the beginning and growth of a disturbance in the 
outer flow started upstream of and prior to the appearance of a low-speed streak near the wall, 
and they suggested that each liftup is associated with a sweep. They affirmed that sweep—now 
accepted and defined as high-momentum fluid that originates in the outer layer and moves toward 
the wall at a relatively shallow angle—is a disturbance that originates in the logarithmic region 
and is characterized by a mean motion toward the wall. They suggested that such disturbances 
are generated by the interaction of an earlier bursting farther upstream with the fluid motion in the 
logarithmic region. Offen and Kline also gave a complete sequence of events: Wall disturbances 
grow slowly and eventually lift up. Then the velocity field is perturbed in the region directly 
above the oscillating wall layer. Near the end of the burst's oscillatory growth, interaction 
between the burst fluid and the motion in the logarithmic region causes the formation of another 
large vortex-like structure; this structure then creates a large wallward moving disturbance in the 
outer flow, which is believed to be associated with another liftup process farther downstream, 
thus completing the quasi-periodic sequence. 

Nakagawa and Nezu (1981) focused on measuring the streamwise and vertical spatial 
characteristics of the ejection-sweep motions as a function ofywT/v =y+, where y is the normal 
distance from the wall, wr is the friction velocity, and v is the kinematic viscosity; they concluded 
that the spatial scale of the sweeps is larger than that of the ejections and, also, that ejections 



extend more widely downstream while the sweeps extend more widely upstream. Blackwelder 
and Eckelmann (1979) used hot-film sensors to measure both streamwise and spanwise velocity 
gradients as a function of spanwise dimension, and they presented a detailed map of low-speed 
streaking, ejection, and sweep. 

Clearly, the microturbulent events depend on each other and apparently follow a quasi- 
periodic sequence. This experimentally observed phenomenology of the microturbulent event 
sequence forms the basis for the Markov analysis to be presented later. 

Purtell et al. (1981) addressed the independence of the Reynolds number from the law-of- 
the-wall and the extent of the logarithmic region. They showed that the extent of the logarithmic 
region as a fraction of the boundary layer thickness does not show a decrease with Reynolds 
number based on the displacement thickness. They reasoned that since the hairpin eddy reflects 
the large-scale structure and is characterized by the extent of the logarithmic region, which is 
invariant with Reynolds number, the Reynolds number is independent of the large-scale structure. 
Head and Bandyopadhyay (1981) demonstrated the effects of the Reynolds number (over the 
range of 500 < Re6 < 17,500) on the wall turbulence structure. They made several major points 
and observations. First, at low Reynolds numbers, they found that the structure is composed of 
vortex loops or horseshoe vortices and, with increasing Reynolds number, these structures are 
stretched to become elongated hairpins or vortex pairs. Second, their unique upstream- and 
dowstream-inclined visualization results showed that hairpin vortices, or stretched vortex loops or 
vortex pairs, are a major constituent of the turbulent boundary layer at all Reynolds numbers 
investigated and that these stretched vortex loops are substantially straight over a large proportion 
of their length and are inclined to the surface at a characteristic angle of 45°. Third, they found 
no evidence of large-scale coherent motions, other than a slow toppling or overturning motion, 
and they found that the large-scale structures appeared to be no more than random 
agglomerations of much narrower features inclined at something like 40° to 45° to the wall. Head 
and Bandyopadhyay suggested that these structures may have their origin in longitudinal vortex 
motions very close to the wall. Their observations do not change the sequence of wall 
microturbulent events, although they hypothesize a different picture of the wall turbulence 
phenomenology, namely, that the wall turbulence is a relatively ordered structure of extended 
vortex loops. Their remaining issue is whether the loops arise from streamwise concentration of 
vorticity or from the warping of transverse vorticity. This issue must await further detailed 
experimental analyses; it, however, has no bearing on the probabilistic model of microturbulent 
events to be proposed here. 

As to the theoretical basis for the existence of the streaks, which are now accepted as the 
genesis of microturbulent events, a number of investigators have found consistent results. 
Bakewell and Lumley (1967) obtained a space-time correlation function of the streamwise 
fluctuating velocities. Using the correlation data as input to an eigen-function decomposition of 
the streamwise fluctuating velocity, they found a dominant large-scale structure of randomly 
distributed, counterrotating eddy pairs of elongated streamwise extent, similar to the commonly 
observed low-speed streaks visualized by wall dye layers. Later, Asai and Nishioka (1989) 
carried out a numerical simulation that explained the origin of the peak-valley wave structure near 



the wall. More recently, Sabry and Liu (1991) applied a time-dependent quasi-two-dimensional 
formulation to simulate the formation of longitudinal vortices from initial Gortler vortices. 

2.1.2 Geometry and Kinematics of Microturbulent Events 

From their measurements of the space-time correlation of wall fluctuating velocity 
components, Kreplin and Eckelmann (1979) found the spanwise center-to-center spacings 
Az+ « 50 and streamwise length Ax+ « 1200 of counterrotating vortices. Using a variable-interval 
time averaging (VITA) process on data from an array of hot-wire anemometers, Gupta et al. 
(1971) obtained detailed probability density functions (PDFs) of streak spacing over a range of 
Reynolds numbers and showed that the PDFs follow X2 exp[-(aA2)], the Maxwell distribution, 

with an average A+ =   —-   «100. (The PDF is further discussed later in this report.) 

Kline et al. (1967) concluded that the ejection of fluid away from the wall in the subsequent 
process is the central mechanism for energy, momentum, and vorticity transfer between the inner 
and outer layers; they presented PDFs for both the spanwise and the mean spanwise spacing, with 
X « 100, and the breakups occurred in the region 10 <y < 30, with a breakup frequency F per 

( Fv7~\ 
unit span of F* =   —j-   « 10   in the turbulent boundary layer over a flat plate with a zero 

V ul j 

pressure gradient. The characteristic frequency was measured to be 2nF*A+ co = ^1 «0.06, 
Kur. 

which is consistent with Black's (1966) a » 0.056 and Morrison et al.'s (1971) co * 0.07. These 
characteristic frequencies can be converted to the time interval between large disturbances 

100, which is longer in comparison to the burst duration T+ = 20 obtained by Kline Tpur 

et al. (1967). Kim et al. (1971) also presented histograms for the time interval between bursts TB, 
i.e., the arrival time of the burst, and derived TB

+ * 0.65i?eö°'73. Laufer and Narayanan (1970) 
analyzed the mean period of the turbulent production mechanism in a boundary layer and found 
that UCOTBIö- 5 and is independent of Reynolds number over the range Ree= 103 to 104. Rao et 
al. (1971) verified Kim et al.'s TB

+ « 0.65Ree
073 relationship and found TB U0/S* « 32 independent 

of the Reynolds number, where Uo is the free-stream velocity and S* is the displacement 
thickness. Bandyopadhyay (1982) showed that UMO» 8.13A x 10 0678ff and is dependent on 
the shape factor H, where A is an empirical constant. Falco (1977) reasoned the identity of 
"typical eddies" with Offen and Kline's "sweep," and he explained that the constancy of burst 
frequency across the outer region was a result of the uniform distribution of the average 
production of typical eddies across the outer region. 

Brown and Thomas (1977) used spatial correlations of wall shear stress and streamwise 
velocity as a function of normal distance away from the wall to determine an oblique angle of 18° 
away from the wall in the streamwise direction. Their analysis was based on separating the wall 



shear stress experimental data into a slowly varying part due to the large scale structure and a 
high frequency part due to the near-wall microturbulent bursting events. They suggested that wall 
shear stress fluctuation is directly connected with the bursting phenomenon, and they gave an 
overall conceptual model of the wall shear stress during the entire cycle from sweep to breakup 
tolift to a new streak. Offen and Kline (1974) showed that the sweeps are visible at y+ «100 and 
that they move at an angle of 6° relative to the plane of the wall. The 6° shallow angle is slightly 
greater than the 4.7° tangent angle of the 12wr (horizontal) and uz (vertical) velocities well 
reported in the literature. Using their space-time correlation of fluctuating velocity and normal 
gradients, Kreplin and Ecklemann (1979) found the streamwise velocity component leading the 
ejected streak outward to be ~ 13.8z/r, which is essentially the mean velocity at>>+ = 40. 
Eckelmann (1974) found that the sweep traveled forward with a nearly constant velocity almost 
corresponding to the friction velocity uT. Morrison et al. (1971) measured the two-dimensional 
power spectra and found the characteristic near-wall streamwise and spanwise wavelengths to be 
k? « 630 and V « 135, respectively. The tan ß= Xflfc « 0.21, or /?« 12°, can be considered to 
be a half-angle between one upstream sweep and two downstream ejections and vice versa. 
Bandyopadhyay (1991) depicted the wall layer as an agglomeration of successively formed hairpin 
vortices arranged in a pattern with /?« 15.3°. This overall geometry has an important implication 
for the control of microturbulent events. Murlis et al. (1982) showed that the burst spacing 
increases as y/8 decreases, indicating that near the wall the burst spacing ranges from 3 8 to 5 8 for 
Reg» 1880 to 4820, where 8\s the boundary layer thickness and Ois the momentum thickness. 

Kim et al. measured the fraction of turbulence production during the burst period and 
concluded that essentially all the turbulence produced in the zone.y+ < 100 occurs during the burst 
period. Wallace et al. (1972) measured the contributions to the Reynolds stress of the inward- 
moving accelerated elements of fluid and the outward-moving retarded elements of fluid and 
reported that they are about the same. Subramanian et al. (1982) compared conditional sampling 
and averaging techniques in a turbulent boundary layer and found that none of the single-point 
detection techniques (i.e., VITA, HOLE, X-wire) was in good quantitative agreement with the 
rake detection technique, although qualitative agreement did exist between single-point 
measurements and rake measurements. More interesting is the fact that during the ejection event 
2XyI5= 0.32 the Reynolds stress is higher than the RMS value, while during the sweep event the 
Reynolds stress falls below the RMS value. This fact can be very helpful in practical applications. 

On wall pressure fluctuations, Schewe (1983) determined that the source of wall pressure 
structures is located in the buffer region of the boundary layer, the same locale where 
microturbulent events are taking place. The convection velocity is approximately 12«T, and the 
streamwise spatial scale of characteristic, large-amplitude pressure pulses is approximately Ax" « 
145. Similarly, Schewe showed the pressure fluctuation frequency a « 0.52, which is about an 
order of magnitude greater than what the shear stress measurement data reveal. The pressure 
fluctuation histogram is nearly Gaussian, indicating that it is equally likely for ejection and sweep 
to take place, further substantiating the hypothesis that ejection and sweep are likely to be paired 
in microturbulent events. This information provides insights for practical applications. Schewe 



also determined that the pressure transducers of diameter dt = I —^-   « 20 are required to 

resolve the pressure structures essential to turbulence. More recently, Löfdahl et al. (1994) 
showed that there was a significant increase in pressure fluctuations with d+ < 20, further 
indicating the need for even smaller sensor diameters. 

All of the above observed facts are fundamental to the thesis proposed here for the control 
of turbulence, viz., even though turbulent flow appears to be random and chaotic, the genesis of 
the turbulence is the near-wall microturbulent events, which have a remarkably quasi-periodic 
coherent structure, as well as deterministic, predictable statistics. By reducing the clearly 
identifiable microturbulent events, such as bursting and sweep frequency of occurrence, one can 
expect to control and reduce turbulence production. Sirmalis (1976) observed dyed turbulent 
boundary layers with low concentrations of polymer and found that the fine-scale turbulence was 
eliminated, leaving only coarse turbulence, and the boundary layer thickness was thinned. His 
observations are consistent with the expected effects of polymer on microturbulent events; i.e., 
polymer reduces the frequency of the ejection, liftup, breakup, and sweep events. In fact, this 
thesis has been verified by Tiederman and Luchik (1982), who injected polymer into the sublayer 
and found increases in /T and in the time between bursts TB

+. Using wall pressure measurement, 
they also established that the increase in /C and TB

+ corresponds to drag reduction. 

A graphic summary of the foregoing observations is presented in figure 1, which shows an 
overall conceptual schematic of the wall-layer microturbulent events. 

2.1.3 Relationship Between Eulerian Observation and the 
Lagrangian Nature of Microturbulent Events 

To visualize in a Eulerian frame an event that is truly Lagrangian in nature, one must deal 
with the issue that definition of the sequence of events would depend on the frame of reference of 
observation. Based on reported experimental results, most of which are in a Eulerian frame, the 
microturbulent events observed in a fixed field view are the sweep, followed by oscillatory 
growth, and then ejection and low-speed streaks. In the Lagrangian frame, the order of sequence 
is reversed, i.e., ejection-growth/breakup-streaks-sweep. In a true physical sense, the Lagrangian 
sequence is the real sequence of events. Fundamental issues can be raised about this concept, 
since the microturbulent events are by no means frozen in space and simply transported by 
advection. However, Nakagawa and Nezu (1981) depicted a three-dimensional view of the 
microturbulent events occurring randomly in space and time, with the coherent structure being 
convected downstream in frozen-turbulence structure, therefore allowing Eulerian observation of 
the convecting coherent structure. Schewe (1983) also found nearly frozen structures that move 
with convection velocity uc = \2uT, also substantiating that the conceptual coherent structure 
repeats quasi-periodically. 

In principle, any parcel of fluid evolves from one stage to another as a function of time. A 
continuous-dye flow visualization cannot capture any particular parcel of fluid motion evolving 
with time unless there is a way of tagging the different fluid parcels and tracking their motions as 





a function of time. However, the continuous-dye flow visualization does capture the many events 
simultaneously occurring. A pulsed-dye release and continuous illumination can better provide 
the Lagrangian depiction of events, which is a truer representation. Unfortunately, so far no such 
experimental observation results have been reported. 

In summary, selection of the event sequence depends on the application. For fixed point 
measurement and detection of microturbulent events, the relevant signal sequence is the Eulerian 
frame of sequence, namely, sweep-breakup/oscillatory growth-ejection-streak-sweep. This is the 
sequence to be addressed in the later Markov process analysis (see section 4). 

2.2 SYNOPSIS OF PROBABILISTIC MODEL RESULTS 
OF WALL LAYER MICROTURBULENT EVENTS 

2.2.1 Microturbulence PDFs 

Based on visualization results, Nakagawa and Nezu (1977) stated that the probability of the 
occurrence of the streak spacing follows a log-normal distribution. Smith and Metzler (1983), 
employing hydrogen bubble wire flow visualization, confirmed this log-normal distribution of the 
streak spacing, instead of the Maxwell distribution of Blackwelder and Eckelmann (1979). Smith 
and Metzler stated that the streaks maintain their integrity and reinforce themselves for time 
periods up to an order of magnitude longer than the observed burst periods. 

Kim et al. (1971) obtained histograms of burst frequency versus./ and established that 
there is a close association with the turbulence production versus y+ and that both distributions 
appear to be similar to a Rayleigh distribution. Rao et al. (1971) suggested that the time between 
bursts follows a log-normal distribution. Bark (1975) applied Rao et al.'s (1971) results of the 
log-normal law of the time between bursts and assumed that the temporal and spatial structure is 
the same for all bursts, with the strengths following a Poisson distribution. 

Murlis et al. (1982) obtained the conditional PDFs of turbulent zone lengths in the 
intermittent region; this intermittent turbulent zone length can be a qualitative representation of 
the burst's streamwise dimension. The peak PDF zone length Ü « 120, which is half the length 
of a typical eddy, can be considered the most probable burst length and was found to be 
independent of Reynolds number. The burst length PDF appears, to the present author, to follow 
an Erlang distribution. 

Eckelmann (1974) presented the PDF of streamwise velocity, which is highly asymmetric 
near the wall. Mitchell and Hanratty (1966), who used an electrochemical wall shear stress meter 
in a pipe flow, obtained the PDF for the axial velocity over the entire velocity range and showed 
that it has a near-Gaussian distribution, with a small skewness toward higher velocity. Bark's 
energy spectra of the streamwise velocity fluctuations were in agreement with measurements by 
Morrison et al. (1971). Using a nine-sensor hot-wire vorticity meter, Vukoslavcevic et al. (1991) 
measured the PDF of three vorticity fluctuations and showed that the spanwise component in the 
near-wall region, as close to the wall as/= 11.1, is quite negatively skewed, indicating that 



intense spanwise vorticity stretching predominates over vorticity compression there. Their results 
also show that the velocity and wall pressure spectra are very similar. 

Sreenivasan and Antonia (1977) presented the normalized wall shear stress PDF and 
showed that it is not Gaussian. They also compared the normalized power spectral density of wall 
shear stress versus frequency obtained by a number of measurements. Schewe (1983) verified the 
histogram of wall pressure fluctuation to be very nearly Gaussian, indicating that wall pressure 
fluctuations encompass effects from both near-wall motions and large-scale motions away from 
the wall. From a statistical modeling point of view, this means that the wall pressure PDF is the 
convolution of many PDFs of many preceding events and, therefore, should follow a Gaussian 
distribution. Blake (1970) obtained thep'2lq ~3ACf , where q = l/2pUo2, over a range of 
Reynolds numbers from 8000 to 28,000; this relationship can also be used to calibrate the wall 
pressure and shear stress measurements. 

2.2.2 Probabilistic Models of Microturbulent Events 

Inspired by Kim et al.'s results, Kovasznay (1975) proposed a model of linear superposition 
of randomly distributed deterministic structures with a Poisson distribution of arrival statistics. 
Bark (1975) derived a probabilistic model of the turbulent stresses based on a random system of 
bursts using an idealized model of the joint probability distribution in time and space of the 
occurrence of bursts. Unfortunately, no further development of similar models followed. The 
known mathematical significance of the Rayleigh probability distribution, the ubiquitous log- 
normal distribution (see for example Aitchison and Brown (1957)), the Poisson distribution, and 
the normal distribution can be applied to infer a possible functional relationship among the random 
variables. Such a relationship may offer additional insight into interpretation of the experimental 
data, which is the focus of this section. 

It is well known that if two random variables x and v are normal and independent with zero 
mean and equal variance, then the random variable z = V(x2 +y2) follows a Rayleigh distribution. 
If the random variable x follows a normal distribution, then the variable z = ex follows a log- 
normal distribution. A log-normal distribution also indicates that the random variable's variations 
are proportional to the variable itself. If two random variables are Poisson-distributed with 
parameters A and fi, then their sum is also Poisson-distributed with parameters A + ju. If two 
random variables are normal-distributed, then their sum is also normal-distributed. By the central 
limit theorem, the sum of multiple random variables of any distribution will nearly follow a normal 
distribution. It is useful to apply these facts to interpret the microturbulence PDFs. 

Table 1 summarizes the known PDFs of microturbulent random variables as an aid to 
inferring possible relationships among them. As can be seen, the wall shear stress—which is the 
sum of shear stresses in the streamwise and spanwise directions—follows a Rayleigh distribution. 
The low-speed streak spacing, the time between bursts, and the time between sweeps follow a 
log-normal distribution, while the burst length in the intermittent region follows an Erlang 
distribution. Random variables that follow a normal distribution are the axial velocity and its 
normal gradient, the spanwise velocity and its normal gradient, and the wall pressure fluctuations. 
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In the discussion that follows, several examples of experimental observations and probabilistic 
interpretations of the relationship among these random variables are given to illustrate the insight 
a probabilistic model can offer. 

Table 1. Known PDFs of Microturbulent Random Variables 

Generic PDF 

Rayleigh 

Frequency of burst vs.y+ 

Turbulence production 
vsy+ 

Wall shear stress 

Erlang 

Burst length in the 
intermittent region 

Log-Normal 

Low-speed streak 
spacing 

Time between bursts 

Time between sweeps 

Gaussian 
(Normal) 

Axial velocity and 
normal gradient at 
/ = 3 

Spanwise velocity 
and normal gradient 
at/=2.7 and 5.1 

Wall pressure 
fluctuations 

Figure 2 illustrates the fact that the low-speed streak spacing follows a log-normal 
distribution. The experimental data and the fact that the spacing follows a log-normal distribution 
were obtained by Smith and Metzler (1983). The mean streak spacing in terms of wall units is 
approximately 100. The probabilistic meaning of the streak spacing following a log-normal 
distribution can be traced to the fact that the spacing is approximately twice the cylindrical vortex 
core radius. The core radius is inversely proportional to the spanwise cellular motion velocity, 
which is proportional to the distance from wall. In other words, the fluctuation of low-speed 
streak spacing is proportional to the spacing itself; thus, its PDF should follow a log-normal 
distribution. 

Figure 3 compares experimental data for the time interval between bursts; it shows, along 
with a log-normal distribution, data from Kim et al. (1971) for Ree= 660 and 1100, and data from 
Rao et al. (1971) for Ree= 620. Among several distributions tried—Erlang, Maxwell, Rayleigh 
and log-normal, the log-normal distribution provided the best fit to the data. Only the distribution 
best fitted to the Kim et al. data with Ree = 1100 is shown here; a better fit to the other two data 
sets can be obtained, but it was deemed not necessary for the purposes of this report. It can be 
reasoned that TB, which describes the time interval between two arrivals, should follow an Erlang 
distribution with n = 2. The data clearly indicate that this is not the case, implying that a scenario 
with bursts arriving perhaps from neighboring ailes of microturbulent events dominates the 
arrivals, rather than the conceptual scenario of an orderly advection of bursts from upstream. 
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Figure 4 compares the instantaneous streamwise velocity PDF obtained by Eckelmann 
(1974) with a log-normal distribution. These data were analyzed and interpreted for their 
probabilistic meaning. Here the data have been normalized by the local mean streamwise velocity 
to allow comparison of velocities from two v+ heights (2.7 and 5.1), and the best fit was found to 
be a log-normal distribution. Since the mean streamwise velocity in the wall region is known to 
vary linearly with distance v+, the streamwise velocity fluctuation also varies with the local 
streamwise velocity; thus, its PDF should follow a log-normal distribution. 

1.0 1.5 
NORMALIZED STREAMWISE VELOCITY 

Figure 4. Probability Density Function of Instantaneous Streamwise Velocity 
Normalized by Local Mean Velocity 

Figure 5, from Murlis et al. (1982), shows experimental data for the burst length in the 
intermittent region, along with an Erlang distribution. Since the burst length can be interpreted as 
the distance between ejection and sweep, it is therefore the renewal process length from the 
arrival of ejection to the end of sweep. The arrival of ejection and sweep can be conceived as 
random variables following a Poisson process; thus, the burst length in the intermittent region 
should follow an Erlang distribution of order n = 2. As is shown in figure 5, the experimental data 
reasonably follow an Erlang distribution, illustrating the plausibility of a Poisson process for the 
ejection and sweep events, so that one can experimentally determine the arrival rate of each event 
that is near the wall and hence be able to predict the burst length in the outer (intermittent) region 
away from the wall. 

In figure 6, experimental data for the wall shear stress (from Sreenivasan and Antonia, 
1977) are shown, together with a Rayleigh distribution. The data again reasonably conform to a 
Rayleigh distribution, although one can probably find a closer fit than that shown. Since, as has 
been demonstrated by Vukoslavcevic et al. (1991), the streamwise shear stress duldy and the 
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spanwise stress dw/dz both follow nearly normal distributions, and the wall shear stress is the 
square root of the sum of the squares of the streamwise and spanwise components, it is expected 
from probability theory that the wall shear stress should nearly follow a Rayleigh distribution as 
figure 6 shows. Antonia and VanAtta (1977) showed that the Gaussianity of the velocity 
fluctuations is valid only as close to the wall as to y/S~ 0.1, and that the spectrum of the 
Reynolds stress can be derived from the Gaussianity assumption. 

Figure 7 compares the experimental data of wall pressure fluctuations obtained by Schewe 
(1983) with a Gaussian distribution. The fit is exceedingly good, as is expected from the 
incompressibility of the fluid. The elliptic nature of the governing Poisson equation dictates that 
the wall pressure fluctuations be a result of disturbances over a domain of influence significantly 
larger than the wall shear stress counterpart, so that it is a sum of many random variables; 
therefore, its PDF follows a Gaussian distribution. 
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2.2.3 Probabilistic Model and Electromagnetic Turbulence Control 

Based on the above experimentally observed PDFs and the sequence of microturbulent 
events, one can construct a conceptual probabilistic model of dependent random variables. The 
model starts with the low-speed streak spacing, which has a log-normal distribution; then, the 
liftups take place with a frequency PDF of Rayleigh distribution, followed by another Rayleigh 
distribution of the sweeps, and a log-normal distribution of the mean time between bursts. Each 
microturbulent event contributes to the wall shear stress; the low-speed streak contributes at the 
low end, with the liftup less than the mean and the sweeps greater than the mean, so that the wall 
shear stress PDF can be construed as the weighted sum of the individual PDFs. This wall shear 
stress PDF can be compared with the measured PDF to " fine tune" the weighting factors for 
practical applications. Similarly, the contributions from each microturbulent event to the wall 
pressure fluctuations can be estimated in the same manner. 

The weighting factors thus derived correlate to the percentages of time of each natural 
microturbulent state. When external electromagnetic influences are present, however, the 
weighting factors will vary because the electromagnetic influences will inhibit certain events (such 
as liftup and bursting), thereby reducing turbulence production, and will promote other events 
(such as the low-speed streaks, which contribute to lower shear stress), thereby reducing the total 
drag over time. 

In summary, the observed quasi-periodic nature of coherent microturbulent events that are 
taking place randomly in a spatial dimension near the wall can be applied to predict the next 
microturbulent event, thereby offering an opportunity to activate an opposing remote Lorentz 
pressure gradient to inhibit the turbulence production process. In other words, the turbulence 
control is based on applying Lorentz pressure gradients toward the wall during predicted liftup, 
Lorentz pressure gradients away from the wall during predicted sweep, and no pressure gradients 
during the low-speed streak. This is the fundamental basis of estimator-predictor feedback 
control of turbulence based on the known, dependent, random microturbulent event processes. 
By sampling the wall shear stress and pressure fluctuations and obtaining a real-time solution 
based on the Markov probabilistic model, the microturbulent state can be predicted and the 
Lorentz pressure gradients applied, which should result in the total turbulent drag being reduced. 

The principles of electromagnetic turbulence control are to apply the Lorentz pressure 
gradient at the normal distance from the wall where the peak turbulence production occurs 
naturally. The objective is not to totally eliminate turbulence but only to inhibit turbulent ejection 
and sweep, allowing the low-speed streaks to exist and persist since they contribute to a more 
naturally stable mode of flow near the wall and are responsible for a low level of shear stress and 
therefore skin friction drag. 

Figure 8 illustrates the concept of applying Lorentz pressure gradient vectors to inhibit the 
naturally occurring microturbulent events. It shows the idealized Lorentz pressure gradient 
vectors inhibiting ejection and sweep simultaneously. 
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3. SCALING RELATIONSHIPS OF MICROTURBULENT EVENTS 

3.1 KINEMATIC PARAMETERS 

Table 2 presents a detailed comparison of the scales of wall turbulence. As can be seen, the 
microburst event has attracted the most attention from investigators because the largest part of 
the total Reynolds stress is produced during the short burst periods (Corino and Brodkey, 1969). 
From this table, one can compile and extract a number of important microturbulent event scales 
for later dynamic analysis. First are the dimensionless scales of microturbulent events (see 
figure 9). Note the reasonable agreement between the two curves for dimensionless distance 
between bursts (these are from Subramanian (1982) and Lu and Willmarth (1973)). Both yield 
similar trends and are on the same order of magnitude as the well-known correlation length of the 
wall layer low-speed streaks. The dimensionless duration of ejection and bursting is O.Sö*/Ux, as 
given in table 2 (Lu and Willmarth, 1973). Similarly, the time period between bursts is given by 
Lu and Willmarth (1973). It is important to note that the burst period is about 70 times longer 
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Table 2. Scales of Wall Turbulence 

Flow 
Regime-» Transitional Turbulent Wall Region Turbulent Outer Region 

Kline's Burst Cycle (1967) 
Events-» 

Mean 
Scales 

Spot Streak 

Ejection 
(Streak- 
Lifting) 

Bursting 
(Oscillatory Growth 

and Breakup) Sweep Typical Eddy 
Large-Scale 

Motion 

Streamwise 
Length 

(*+) 

2to4£ 1 to 25 
(1200)a 

0.1 to 0.2 8' 
(20 - 40) 

0.2 to 0.55' 
(40 - 150) 

(120)b 

0.1to0.3J* 
(20 to 90) 

0.255 
(<200) 

1.6to4£* 

Spanwise 
Length (z ) 

2to4J (100) 
<x=0.4 

(5 to 50)c 

(10 to 30)d 
(<100) (<100) (200) 0.5 to 18' 

Normal 
Distance 
from Wall 

5 
(500) 

(0 to 30) 
(center @ 
20 - 30) 

(15 to 20) (15 to 60) (<100) <<5(100) 
(edge of 

turbulent/ 
irrotational 

flow interface) 

8 

Time 
Duration 
(Interval) 

Indefinite 480 up to 
2500e 

(FV")"
1
 = loo 

* 
S 

0.2  

f 
h 

* 
6      „+ 0.6 ,T   = 2( 

(      8*         ^ 
32 ,6  

u]                  0.7 
; = 0.65Ree 

V 

) 

3 

r 

* 
8 

0.3 , 

T+ s20 

* 
5 

(40 ) 

N.A. 5* 
2.5  

«CO 

Burst Rate 
per Span (F) N.A. N.A. — 

-4     dp 
1.5x10     @— = 0 

dx 
... — — 

Advection 
Velocity 
in U„ 
(u) 

0.5 to 0.8 N.A. 0.4 to 0.8 

(12) 

0.4 to 0.8 

(12) 

0.4 to 0.8 

(12) 

0.95 0.95 

Vorticity 
Strength 

S         v 
0.1^ 

V 
N.A. 1.2 — 

V V 
0.4^ 

V 

References Wygnanski et al. 
(1976); 
Cantwell 
et al. (1978) 

Kline et al. 
(1967); Black- 
welder & Eckel- 
mann(1976); 

Kreplin & Eckel- 
mann(1979); 

"Smith & Metzler 
(1983) 

Kline et al. 
(1967) 

Corino& 
Brodkey(1969); 

dKimetal.(1971) 

Kline et al. (1967); 
Kim et al. (1971); 

fRaoetal. (1971) 
Lu&Willmarth(1973); 
Blackwelder & Eckel- 
mann (1979); Kreplin & 
Eckelmann (1979); 

bMurlisetal. (1982); 

Kim et al. 
(1971); 
Lu& 
Willmarth 
(1973) 

Falco(1977); 
Head & Bandy- 
opadhyay(1981) 

Falco(1977) 

N.A. = Not Applicable. 
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than the duration of ejection and bursting. Because of the microscales of the turbulent events, it is 
conceivably more difficult to inhibit each individual ejection and bursting over a small spatial scale 
and short temporal scale. Conceptually, the electromagnetic turbulence control (EMTC) pulse 
rate should be based on the burst period rather than on the individual ejection and burst durations. 

3.1.1 Time Scales 

From Corino and Brodkey (1969), the combined ejection-breakup duration can be 
calculated to be O.SS*/Ux, which can be expressed in terms of inner scaling as 0.00136i?e/6, 
where Rex is the streamwise length Reynolds number. Similarly, the sweep duration in terms of 
inner scaling can be expressed as 5.1 x lO^Re™. The burst period is 30S*/UX or, in terms of 
inner scaling, 0.05 lite*0'6. Figure 10 illustrates the time scales in dimensional form. As flow 
speed increases for the same length x, the ejection-breakup and sweep durations decrease 
inversely as Rex'1A, and the frequency increases as Rex ' . 

100 

X 

in 

o 
LLl 

Li. 
D 
Z 
< ■ 

CO 
D z o o 

0.1 

0.01 

0.001 

0.0001  -- 

0.00001 

EJECTION&BREAKUP 
PERIOD (SEC) 

-SWEEP PERIOD (SEC) 

EMTC ANTI-EJECTION 
«BREAKUP FREQ (KHZ) 

- EMTC ANTI-SWEEP 
FREQUENCY (KHZ) 

10 15 20 25 

FLOW SPEED (M/SEC) 

30 35 

Figure 10. Dimensional Time Scales vs Flow Speed 

21 



3.1.2 Length Scales 

Dimensionless length scales have been provided by several investigators. As indicated in 
table 2, the combined ejection and burst length scales can be obtained by multiplying the 
combined ejection and burst duration by the local streamwise velocity at.y+ = 40. The local 
velocity is calculated from the van Driest formula: u = 5.5 log.y+ + 5.2 = 14. While one could 
question the Reynolds number dependence of these relationships, Purtell et al. (1981) established 
that, at least in the low-Reynolds number range, the law-of-the-wall and the extent of the 
logarithmic region are independent of the Reynolds number. Therefore, in terms of inner scaling, 
the combined ejection and breakup length is 11.2 S*uT/UK or 0.0\9lRex

0'6. Similarly, the burst's 
periodic length can be calculated to be 420 ^ur/Ux or, in terms of inner scaling, 0.7148i?ex

06. 
Lu and Willmarth (1973) also gave the burst's periodic length to be 4.3£, which translates to 
0A327Rex

0J, which is not very different from the expression above over the range of validity of 
5 x io5 < Rex < 107. These scales are illustrated in figure 11. 
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3.2 DYNAMIC PARAMETERS 

3.2.1 Natural Microturbulent Burst Power Scaling 

It would be ideal if dynamic relationships could be derived for all microturbulent events. But, 
because of a dearth of frequency-per-span information for sweeps, only the power scaling for 
ejection-breakup events can be carried out, which is presented below. For practical applications 
of controlling turbulent drag, this might be sufficient, since the majority of Reynolds stress is 
produced during the burst period. 

The power required for a microvortex ejection can be derived from basic dynamics principles. 
One starts with the definition of power: 

-  _    A(mu)  _       AxAvAz,.       .  .  - 
Fu = ——-u = p -—(Aw + AvVw 

At At 

(l00)2-30 
P-        — 

204 
u: 

-H [(l4u2
z) + u2] = 2.lxl05puTv\ 

where it is assumed that Ax+ = 100, A/= 30, Az+ = 100, At+ = 20, Au = u (y - 60) - u (y = 30) = 
uT, Av = uT, and the local velocity vector is assumed to be u = UuT, v = ur. From this relationship, 
one can easily calculate the energy per ejection by multiplying the above expression of power per 
ejection by 20v/wT

2: 

= 4.2xlOV—■ 

The next step is to calculate the power per unit area in a natural burst cycle: 

Power per unit area = energy/ejection x number of bursts/span/sec/burst separation 

- 4.2 x IOV-I.5 x IQ"44^— = S9Re9
073pu3

T. 

From these relationships, the natural microturbulent burst scaling for 5 x 105 < Rex <10 can be 
summarized: 

Dynamics: 
Vortex liftup force per ejection =2.1 x 10 pv 
Vortex liftup power per ejection = 2.1 x 10 puxv 
Vortex liftup energy per ejection = 4.2 x 10 pv lut 

Power: 
Natural microejection power required per unit area = 69Re0~' pur 
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It is, however, important to point out that bursting contributes significantly to Reynolds 
stress but accounts for only a small fraction of the dynamics, as would be expected. This fact can 

r3. be demonstrated by comparing ejection power per unit area with \l2pU cyand examining the 
ratio, which can be expressed as » 20Re^5i = 0.05 and = 0.007 for Ree= 103 and 104, 
respectively. 

3.2.2 Threshold Lorentz Pressure Power for 
Electromagnetic Turbulence Control (EMTC) 

The threshold Lorentz pressure required for EMTC can be derived by comparing the Lorentz 
pressure power per unit area with the power per unit area in natural microturbulent burst cycles. 
Conceptually, the threshold is where this ratio equals one. Before one can proceed to derive this 
ratio, one must establish the length and time scale assumptions, which are summarized below: 

Length Scales: 
Spanwise spacing of Lorentz pressure 100v/wT 

Distance normal to wall of Lorentz pressure 30v/ur 

Time Scales (if pulsed or ac): 
Lorentz pressure frequency 1/7$ 
Lorentz pressure pulse duration 20v/u? 

Since it is not clear a priori that this threshold would be identical to that for the case of Lorentz 
pressure in the streamwise flow direction or direction normal to the solid wall over which 
turbulence is generated, calculations will be carried out for both of these cases. For the normal 
Lorentz pressure, the Lorentz pressure power/area = Ap • u.   Since the power required per unit 

area in natural burst cycles is = 69Reg073pu3
T, the power per unit area in natural burst cycles in 

terms of length Reynolds number can be derived to be = 78 lRe~°5Mpul. The threshold Lorentz 

power must then be equal to or greater than the power required in the natural cycle: 

Apu = J   "'JxB-iidy 

= J0B0)0 "<e aeyudy 

e a v dy. 
(•4U— 40-    -ÜL 

where J and B are the externally applied electrical current density and magnetic flux density 
vectors, respectively. 

In a turbulent boundary layer without an axial pressure gradient, the local vertical velocity has 
zero mean. The vertical velocity is away from the wall during ejection and bursting, and it is 
toward the wall during sweep. Unless the Lorentz pressure is sustained long enough to give rise 
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to a velocity along the Lorentz pressure gradient vector, no net work would be done to the flow. 
In practice, this implies that the EMTC pulse duration should be longer than the combined 
durations of ejection and bursting. Assuming that a velocity normal to the wall on the order of 

the natural turbulence, v = ux in the active MHD region, then 

Ap-u =          

which is a highly idealized candidate for an order-of-magnitude estimation. In other words, the 
magnetohydrodynamics (MHD) interaction parameter must satisfy 

1- 
80v> 

eu- 
V J 

J0B0a 

\l2pu2
T 

f 80v^ 
In a -e   ' 

V J 

> 
3124 

Re 0.584 

For the streamwise Lorentz pressure gradient case, the local velocity is u = 14 uz: 

v 1y 

Ap-u= f40^ J0B0e ~°u(y)dy,       u(y) = uz — up to 10— and beyond that 
Jo v uz 

wCy) = Mr(5.51ogj;++5.2); 

40^ -^     yu f40^ -^ 
Ap ■ Ü = I   "* J0B0e  

a uz ^dy + J  ?J0B0e 
a u 

JO y »10— 
5.5 log 

\ v 
+ 5.2 dy, 

J0B0uTa 

ua 

4v 

f 20vA 20v f      20v AQv\ 

-5<T"^+2.6 l-e u<" 
V J 

e u<° -e "<° 
v J 

+ 2.751og 
^ua^ 

V 2vJ 
euta  _eura   Lf^g-«log^ 

I J 20v 

so that, since the power/area in the natural burst cycle = 78 lite/5  puz, the threshold Lorentz 

power would then follow: 

J0B0a „     1562 

l/2pu2
z
K}    Re 0.584 
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where {•} represents the long expression of the geometric factor in terms of the EMTC cell 

spacing parameter u^q/v. It is interesting to note that the threshold Lorentz pressure, in terms of 
the MHD interaction parameter, is higher for the Lorentz pressure gradient normal to the wall 
than for the streamwise case along the flow. 

One way to illustrate this threshold condition is by displaying the ratio of the left-hand side 
and the right-hand side as a function of the MHD interaction parameter JBalpu], and the spacing 

Reynolds number u^a/v as a function of the length Reynolds number. When this ratio is close to 
or greater than 1, the turbulence control is expected to be effective; a ratio below 1 implies less 
effectiveness, and a ratio much above 1 may mean overexertion of control, implying less 
efficiency. Figure 12 presents the case of free-stream Reynolds number = 105. 
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Similarly, figure 13 shows the case where Reynolds number = 107 over the same domain of 
cell spacing Reynolds number and MHD interaction parameter as in figure 12. By comparing the 
two graphs, one can see that as the free-stream Reynolds number increases, the ratio increases for 
the same cell spacing Reynolds number and MHD interaction parameter. 

It is interesting to note that the ratio is the highest for small spacing of electrodes and 
magnets and an MHD interaction parameter value greater than 1. The ratio decreases as spacing 
increases and the MHD interaction parameter decreases. Both trends are consistent with a 
rudimentary understanding of electromagnetic control of turbulence in a conducting medium. It is 
also interesting that, as the free-stream Reynolds number increases, the ratio increases, implying 
that for the same EM cells and MHD interaction parameter the turbulence control effectiveness 
increases. By setting the ratio to be unity, one can relate the EM cell spacing to the MHD 
interaction parameter as a function of free-stream Reynolds number, thereby defining the 
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threshold condition as a function of Reynolds number. Specifically, this can be expressed as 

Rea = -415.9iWVln(l - 7SlNimRex°-5U). 

This expression is illustrated in figure 14. 
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3.2.3 EMTC Efficiency 

To obtain an indicator of the effectiveness of any EMTC approaches (normal or axial or any 
other configuration), the efficiency concept is introduced. One seeks an analytic expression that 
will relate some basic design parameters expressed in terms of nondimensional parameters to the 
flow's nondimensional parameters, such as the Reynolds number, MHD interaction parameter, 
load factor, and electrode parasitic voltage losses. This expression can be used to guide the point 
design as more practical approaches are introduced. First, the ideal efficiency is defined as 

Vi = 
Power Saved by EMTC 

Input Power to Electrodes 
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The power saved by EMTC per unit area = V2plfAcf, where cf is the friction coefficient, 
and the power input to the electrodes per unit area = IV, where / is the electrical current and Fis 
the voltage, so that 

1 

li = 

pU3Acj 

This ratio can be decomposed into products of efficiencies of several dominant physical processes; 

namely, 

Tjt = (pwr saved by EMTC per unit area / pwr expended due to natural turbulence production per unit area) 

* (pwr expended due to natural turbulence production per unit area / Lorentz pressure pwr per unit area) 

* (Lorentz pressure pwr per unit area / electrical pwr delivered in seawater per unit area) 

* (electrical pwr delivered in seawater per unit area / input electrode pwr per unit area). 

In other words, the above expression can be interpreted as the product of several intermediate 

efficiencies: 

77, = (turbulent drag reduction efficiency) * (drag / Lorentz power ratio) 

* (electromagnetohydrodynamic efficiency) * (seawater electrode efficiency). 

Specifically, 77 can be expressed as the product of the following ratios: 

Turbulent Drag Reduction      Natural Turbulent Drag       Lorentz Pressure Power       Electrical Power in Water 

Natural Turbulent Drag        Lorentz Pressure Power     Electrical Power in Water        Input Electrode Power 

Ac, \PU'ct 
J0B0a 
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It is interesting to note that the major physical dimensionless parameters — imposed MHD 
interaction parameter Nim = (JoBoa)/pu^, electrical load factor L = EI(uzB), and potential ratio 
V/Vo — emerge in these expressions. The same results can be obtained by a rigorous application 
of the pi-theorem. 

Examining these expressions, one can see that 

Acf    i 
1i oc • 

cf   Nir 

so that as Nim —» 0 and L -> 0, 77, would approach infinity. This simplistic argument neglects the 
fact that as Nim, L -> 0, meaning that no EMTC is applied, Acfl C/-> 0; therefore, 77 -» 0. The 
interesting behavior of 77, —> 0 as Nim, L —» 0 must await more detailed experimental observation 
or asymptotic theoretical analysis of small Nim and Z parameters. 

Another point concerns the ratio V0/V, where Vo is the electrode's overpotential. To deliver 
electrical power into seawater, JVFmust be less than 1. As V0/V decreases, the electrical 
efficiency decreases linearly. For practical applications, the ratio Fo/F ranges from 0.1 to 0.5. 
The smaller value of V0/V herein implies larger Nim and L. Therefore, to increase 77,, one must 
optimize the entire system, not just the individual terms. Note also that Ac//c/is a function ofNim, 
Cf, and L. Since Cf is a function ofRee, Acy/c/is a function ofRe$, Nim, and L, and can be obtained 
only via systematic experimental measurements. The dependence of Ac/fcf on Nim and L must be 
consistent with its behavior near the origin of the Nim, L, Reg coordinates. In other words, Acf/Cf 
should be 

Ac 
— = Nl:aLl+bf(Re9,Nim,L), 
cf 

so that rji = N°mL
bf(Ree,Nim,L), where a and b are any positive values. To satisfy the large 

Nim, L value limit behaviors, i.e., dr\ildNim < 0 with Nim » 0, L » 0, one expects that 
dlnf/ d\nNim < a and ^n//^lnL < b. These conditions can guide experimenters in analyzing 
measurement data. Based on experience with seawater MHD propulsion tests and the above 
observations, one can conjecture 77, to be of the following form: 

ViccN°mL
be-N<»e-L, 

which has a single peak at (Nim, L) = (a,b). 
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4. MARKOV TRANSITION PROBABILITY AS A DIAGNOSTIC TOOL FOR 
CHARACTERIZING AND CONTROLLING WALL MICROTURBULENT EVENTS 

4.1 HYPOTHESIZED MARKOV CHAIN OF MICROTURBULENT EVENTS 

The wall layer microturbulent events are mutually dependent and can be related to the 
Markov chain of stochastic processes, which is depicted in figure 15. 

AM 

SWEEP 

.Us 

/-\/4 

Aeb 

ry* 
Abi 

r\ßi 

EJECTION \ 
OR LIFTUP J 

Als 

( BREAKUP ) /LOW-SPEED' 
I STREAK I 

Figure 15. Markov Chain of Stochastic Processes 

Note the similarity of this chain to the continuous birth-and-death chain well known in Markov 
analysis. It is a single-chain, quasi-continuous process. As shown in figure 15, the assumptions 
are that the entire event chain is characterized by the few identifiable discrete events, and the 
reverse transition probabilities from any state to the previous state are zero, except for the 
eventual low-speed streak state to sweep state. The transition probabilities are Ays, and the 
distinctive states are characterized by the percentage of time resident in each state. One certainly 
can argue that not all low-speed streaks lead to liftup; although if the local Reynolds number 
exceeds the transition limit, it is certain that eventual transition will occur to the hairpin vortex 
liftup, which ultimately leads to the breakup state. One should further note that the turbulent 
events form a single-chain, quasi-continuous birth-and-death process. This assertion is based on 
the observation that no periodic states exist. It is important not to confuse Markov periodic states 
with the periodically occurring discrete states in a turbulent boundary layer. The former exist if, 
for every yfc-number of experimental trials, a particular state emerges, which is certainly not the 
case in the wall layer microturbulent events. The latter are states that occur with predicable 
periodicity over certain spatial and temporal scales. 

Several issues regarding the Markov representation of the discrete events in a turbulent 
boundary layer remain to be addressed. Among these are the satisfaction of the Markov process 
definition, i.e., that there is only a finite number of discrete states, the probability of any state 
depends only on the probability of the previous state in the time sequence, the existence of 
limiting states, and their corresponding limiting probabilities. Resolution of these issues must 
await later theoretical analyses. 
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4.2 MARKOV TRANSITION PROBABILITIES IN 
THE ABSENCE OF EXTERNAL FORCES 

The four microturbulent states are mutually dependent and they occur according to a 
specific sequence. To describe the probabilistic model, one starts from the Chapman-Kolmogorov 
equation p't(t) = -ftPi + %AßPj(t), where ' represents the time derivative. This equation states 

that the rate of change of probability of any one state is determined by the regeneration rate of 
itself and the transition probabilities of other states, multiplied by the probabilities ofthat state. 
Stated in terms of the four mutually exclusive microturbulent states—/ for low-speed streak, e for 
ejection, b for breakup, and s for high-speed sweep, one can rewrite the above equation as 
follows: 

P'e(t) = -MePe(t) + ZAJePj.(t\ 

Pl(t) = -Hbpb{t) + ^jbPj(tl 

P'si*) = -MsPsi*) + ZAjsPj(0, where S is over ally's, 

If one assumes that the microturbulent states follow a continuously cyclic process, in other words 
the transition probabilities are nonzero only for those states in the observed sequence, i.e., 
Xel = Aes = Abe = Abs = Asb = Abe = Ad = Aw = 0, then the above equations become: 

p'e(t) = -n.pt(t)+KpA*\ 
P'b(t) = -fibpb{t) + Aebpe{t\ 

P's(t) = -Lisps(t) + Alspl(t), 

These equations can be solved analytically if all A/s and //s are constants. 

4.3 MARKOV LIMITING PROBABILITIES FOR 
NATURAL TURBULENT BOUNDARY LAYERS 

All of the experimental measurements reported are based on long-duration averages that 
show the sequence of near-wall events: liftup and ejection, breakup, low-speed streak, and high- 
speed sweep toward the wall. The entire cycle then repeats itself. These states are mutually 
exclusive and exhaustively collective to describe any possible state of the turbulent boundary 
layer. Probabilistic analysis of results of any point diagnosis of local state in a turbulent boundary 
layer must, however, consider transition probabilities from all neighboring streaks and ensuing 
structures. This implies that even though the instantaneous point observations in a Eulerian frame 
of reference show random migration of neighboring streaks' sequence of discrete events, such as 
the sequence of streak-to-vortex liftup then back to streak from a neighboring streak, the long- 
duration observation (i.e., over a time scale oft» period of the breakup or burst cycle) shows 
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only the above four discrete events, which occur periodically and indefinitely, until flow 
conditions change. Therefore, probabilistically speaking, it suffices to say that after many 
statistical trials, i.e., as the number of observations approaches infinity, limiting probabilities (P/'s) 
exist for each discrete event. In principle, one could then use the Chapman-Kolmogorov equation 
to derive the limiting state probabilities, provided that detailed measurement data exist over a very 
short time scale (a time scale shorter than a small fraction of the burst period) and provided that a 
reliable signal processing algorithm is available to record and detect all transition probabilities 
from neighboring states. This derivation would be very technically demanding and time- 
consuming. 

In the case of fully developed turbulent flows without externally applied unsteady forces, 
one expects that the stochastic process will asymptote to the limiting states, i.e., the time 
derivatives vanish, so that a stationary stochastic process can be established. This is 
mathematically possible if the regeneration rates and transition probabilities follow the known 
sequence and, therefore, the following conditions: 

Me = ^i' 

Mb ~ Kn 

Ms = *„, 

Mi = K- 

With some rearrangement and substitution, the following solutions can be established in terms of 
the arrival rates ju's: 

A = l/ 
V     Me    Mi    MbJ 

Pe=—Ps> 
Me 

Pi = —Ps, 
Mi 

Pb=—P, 
Mb 

These rates can be determined experimentally from the mean time between arrivals. For practical 
applications, the arrival rates for ejection, breakup, and sweep can be assumed to be the same as 
the experimentally measured burst rate. The arrival rate for the low-speed streaks can be 
estimated by multiplying the burst rate by the ratio of streak coherence length to ejection and 
burst length (« 12), or by the ratio of burst period to combined individual ejection-breakup-sweep 
duration («30). 

In summary, the measurement data, by definition, have already provided the information, 
based on the limiting states, that can help to determine the limiting probabilities. Specifically, 
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one can use the experimentally observed mean time between occurrence of events to determine 
the birth rates of each event, and then apply the Chapman-Kolmogorov equation to calculate the 
limiting probabilities. Once the probabilities are determined, many statistical parameters can be 
obtained to aid practical implementation of EMTC. To illustrate the methodology, one can 
simplify the real-time calculation by assuming that the ejection and breakup states can be 
combined. This assumption then yields the following equations governing the limiting states 
condition, i.e., all derivatives vanish: 

1 
f \ 
l + i^ + iL 

V      Me     MiJ 

Pe=—Ps, 
Me 

Pl=—Ps- 
Mi 

With this approach, only the arrival rates of the ejection/breakup and sweep states need to be 
measured from the experimental data. 

4.4 MARKOV TRANSITION PROBABILITIES WITH EMTC APPLIED 

In a natural turbulent boundary, the sequential order described in the phenomenological 
cycle is the only allowable mode of transition. Since all transition must occur with eventual 
certainty, one finds that the limiting states apply. Given that the frequency of occurrence of each 
state is proportional to the probability of each state, the experimentally obtained fractional times 
of ejection, breakup, sweep, and low-speed streaks serve as a guide to demark the wall pressure 
fluctuation and wall shear stress histograms into four nonoverlapping regimes. The transition 
probabilities /ly's are related to the experimentally measured arrival rates. 

When an external influence is activated, the transition probabilities no longer are certain and 
the sequential order may not be preserved; in fact, some reverse transition is conceivable, 
although the natural tendencies must still be overwhelming. In this case, the full set of transition 
probabilities must be dealt with. For the unsteady case, the full set of state probability equations 
is as follows: 

P'e(t) = ~MePe(0 + MsPs(tX 

Pb(t) = -MbPb(t) + MePe(t\ 

P's(t) = -MsPs(0 + MiPM 

A(0+A(0+#(0+A(0 = 1- 
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To solve this set of equations, one must make some assumptions about the arrival rates. First, 
one assumes that the arrival rates are independent of time, as the experimental data indicate for 
the natural turbulent boundary layer. The question then becomes: Does this assumption apply to 
the case where externally applied forces are present? Second, one assumes that the time-varying 
state probability depends on how much control is to be imposed. These assumptions are 
connected and are solely a function of the control methodology. If the control methodology is to 
completely eliminate turbulence, i.e., totally eliminate the microturbulent events, then the arrival 
rates would be zero, and the states representing each microturbulent event would not exist, and 
the local flow would surely correspond to laminar flow conditions. Knowing that the 
microturbulent events represent the most stable flow configurations under turbulent conditions 
that nature can provide, the control methodology should be one that is in harmony with nature 
rather than one that tries to overcome nature. Therefore, the turbulence control methodology 
adopted here is to mitigate or minimize the occurrence of microturbulent events. Given that the 
control methodology is based on inhibiting turbulence rather than on totally eliminating it, the rate 
of change of state probabilities should be small compared with the limiting state probabilities, i.e., 

%— In pe(dt), fB—\npb(dt), and TB— \nps{dt) all should be much smaller than 1. Then, the 
dt      e dt dt 

first assumption (viz., that the arrival rates are not different from in the natural state) is satisfied, 
and the second assumption is addressed by using only marginal control to maintain the turbulent 
state at a much lower level of turbulence production. 

Given the above assumptions, the differential equations can be solved versus time. To 
illustrate the process, the above equations can be simplified by assuming that ejection is followed 
by breakup, so that only three states need to be considered, i.e., 

P'sit) = -Msps(t) + M,[1- A(0 - A(0], 

with the initial conditions pe(0), ps(0), pt(0) equal to the limiting state probabilities in natural 
turbulent boundary layers. The above equations can be represented by 

d_ 

dt 
>.(0" 

= [PMPM 
~Me 

Ms 

-Mi + 
"0" 

Mi+Ms\ LMi\ 

This equation has the exponential solution e0*, where the a's are eigen-values of the coefficient 
matrix 

-Me Ms 

-Mi    -(MI+MS)_ 

The two «i, cc2 are roots of the following quadratic equation: 

(a + /0(« + Mi+ Ms) + MiMs = ° • 
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If one substitutes the following into the state probability differential equations, 

>.(0" 
A(0 

'PeniO 

Psnit) 

where pe„ andps„ are the nonhomogeneous parts of ordinary differential equations, one obtains 

d_ 

dt 

Pent*) 

PsniO 

0 

ßl. 

which can be solved easily as 

PeM 

PsniO 
M 

L a 

C 
l-(l-e-at) + D 

or 

A(0" 
A(0 

1,2 

A 

q.ea,f 

The total solution is then 

A(0 = 0.5-A(o)[e8»'+c-*'], 

A(0 = 0i-A(o)[ca«'+ea*'] + ^'(ea"'-l) + -^-(eaj'-l) 
a, a, 

Note that «i, a2 are complex conjugates; pe and/?* are always real numbers, which is consistent 
with the probability concept. 

The consistency of these solutions can best be demonstrated by a simple example of 
numerical results. First of all, the values of the arrival rates ///, /ie, and jus need to be determined 
from the experimental data. Using the time durations listed in table 2 for ejection, breakup and 
sweep, the //'s can be evaluated to be fi,« 31.5/32, jUe« 0.2/32, and fxs« 0.3/32. The two a's can 
be found to be ax « 0.015 + 0.124/ and cc2 « 0.015 - 0.1247. From these values, the probabilities 
of states e, s, and / can be calculated as a function of time. For a hypothetical case where 
jui = 0.37, jug = 0.68, and jus = 0.68, the two roots are -0.87 + 0.47/ and -0.87 - 0.47/.   Figure 16 
shows the crossover from low-speed streak to sweep. 
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Figure 16. Sample Calculated Results for Discrete Micoturbulent Markov State 
Probability vs Time, Illustrating Crossover from Low-Speed Streak to Sweep 

Similarly, the full set ofps, pe, Pb, pi equations can be solved; the analytic solutions are 
derived below: 

P, -(Ms+Mi) -M, -Mi P< Mi 
d 

dt 
Pe — Ms 'Me -Me 0 Pe + U 

Pb 0 Me -Mb Pb\ U 

The exponent a's are eigenvalues of the matrix 

-(Ms+Mi)   -MI    -Mi 

Ms 'Me ° 

0 Me        'Mb 

i.e. 

or 

(a + jus + Mi){a + Me)(a + Mb) + (a + Mb)MsMi + MsMeMi =0, 

a3 + a2 (Ms + Me + Mb +Mi) + a(MsMe +MsMb +MeMb + MbMi +MiMe+MsMi) 

+ MeMb (Ms+Mi) + M,Ms(Me+Mb) = °- 
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Then, 

Ps 

Pe 

Pb 

rsn 

ren 

Pbn 

?«',  and — 
dt 

rsn 

■Ten 

Pbn. 

Ml 
0 

0 

so that 

\p,«y a -1) 

p.«) = Deat 

_A(0. Eem 

in the same manner as the simplified case shown before. 

There are two noteworthy points to make regarding these solutions. First, since all ju 
values are positive and less than 1, the eigenvalues are summed to be equal to ^s+/xe+^b+^i = 1. 
Second, the product of all three roots is positive and less than 1, implying that two are complex 
conjugate. The real root is positive and less than 1. 

4.5 ESTIMATION OF MARKOV TRANSITION PROBABILITIES 
WITH EXTERNAL FORCES APPLIED 

Two familiar ways of presenting turbulent boundary layer data are the wall shear stress and 
the wall pressure probability histograms; both can be conceptually useful indicators for purposes 
of microturbulent event control. It is well-known that shear stress is dominated by small-scale 
eddies near the wall, while the wall pressure power density results from both large eddies away 
from the wall and small eddies near the wall. So, in a global sense, the wall shear stress 
fluctuations exist primarily as a consequence of the inner wall events, while the wall pressure 
fluctuations are due to both inner and outer wall events. The low end of the wall shear stress 
histogram represents the vortex liftup and ejection and breakup part of the cycle, while the high 
end of the histogram indicates the sweep part of the cycle. Similarly, the wall pressure histogram 
provides another cross-examination of the local microturbulent events, where the shear stress and 
wall pressure probes are located. 

Two fundamental issues need to be addressed. First, it is important to differentiate between 
the turbulence phenomenology in a moving framework of a single cycle and the wall shear stress 
or pressure measured on a stationary framework simultaneously receiving inputs from many 
phenomenological cycles. If one accepts that Taylor's hypothesis is applicable, then the problem 
can be simplified. One can integrate the area under the histogram to find the percentage of time 
each event occupies in the complete cycle, and then one can carry out calculations of Markov 
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transition probabilities via established stochastic theories. Second, however, to formulate a 
complete diagnostic and predictive tool of turbulence modification methodology, one must 
connect the mass, momentum, energy, or power density balance to the modification approaches. 
For the electromagnetic Lorentz pressure gradient approach, the mass is always conserved and 
unaffected by the control methodology. To account for momentum would require solving the 
Navier-Stokes equation, a nearly impossible undertaking at the present time. The power density 
balance in a global sense is possible for purposes of the experimental data trend analysis. This 
approach is presented as follows. 

The spectra of both the shear stress and wall pressure provide different views of the effects 
of the same microturbulent events. The low wavenumber part of the wall pressure spectrum 
characterizes the power density content of outer layer events, as does the high wavenumber end 
for near-wall inner layer events. The same holds true for the wall shear stress spectrum. 
Although there are many competing arguments for explaining the low wavenumber end of the 
wall pressure spectrum, and although the high frequency and wavenumber end of the spectrum is 
controlled by the sensing frequency response, the objectives here deal only with the power density 
integrated under the spectrum, which is less sensitive to the details of the spectrum fine structure. 
For the shear stress frequency spectrum, the same caveat is applicable. 

The challenge then is in how the transition probabilities are determined. One hypothesis is 
that the transition probabilities should be influenced by the power density ratio of the 
microturbulent event of the natural state to the sum of the power densities delivered by the 
Lorentz pressure gradients Ly and the natural state Pv. In the absence of an externally applied 
power density, the ratios are identically equal to 1. For regions where the Lorentz power density 
inhibits liftup, the ratio would be diminished by the Lorentz pressure gradient, and the transition 
probability lse is therefore correspondingly reduced from its natural transition value. For the axial 
Lorentz pressure gradient, the liftup process is stretched over longer time and spatial scales, and 
the transition probability is modulated by the ratio of power density of the liftup natural state to 
the sum of it and the axial Lorentz power density input. If the latter overwhelms, the transition 
probability from liftup to breakup is diminished. The transition probability equations are then: 

^EMTdj = kj in natural TBL • PV/(PV + £/,), for all f s and/s, 

where the P,/s and/>,/s are transition power densities corresponding to those from the natural and 
controlled state /' to state y, respectively. Altogether, there are 16 equations for 16 unknowns. 
Again, as in the phenomenological model, the derivation here is based entirely on the 
microturbulent events empirically revealed and known today. As more detailed information is 
obtained, the models can be refined accordingly. But the concept and basic process are the focus 
here rather than the details, which can be debatable in several cases. Certain discrete state 
transition probabilities can be determined purely theoretically; for others, one has to rely on the 
integrated power density under each state and relate the power density differences to the 
transition probabilities. 

The methodology for estimating the current state of the turbulent boundary layer in the 
presence of applied external forces is now described, again using EMTC as an example. The 
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PDFs of wall shear stress and wall pressure fluctuation are shown in figures 17 and 18. They are 
as shown earlier (in figures 6 and 7) except that the PDFs are demarcated into several 
nonoverlapping regions. The first region is for the low-speed streaks, which generate the lowest 
level of shear stress fluctuation, so that this region occupies the zero-mean-value band of the 
shear stress PDF. Then comes ejection, which because of its induced counterflow has a local 
shear stress fluctuation that is above that of the no-ejection state but below the mean shear stress 
and, therefore, is at the negative end of the x'w value. For the breakup state, there is little or no 
specific measurement data describing how it affects the local shear stress fluctuation. Intuitively, 
however, one would expect that the shear stress fluctuation would be higher than the mean during 
breakup, so that it occupies the third region, just to the right of the mean shear stress value. 
During the sweep state, experimental evidence indicates increased shear stress fluctuation because 
high-momentum fluid from the logarithmic region is imparted toward the wall; therefore, the 
sweep state is at the high end of the shear stress PDF. With this relative ranking given, and with 
knowledge of the limiting probability of each state in a naturally occurring turbulent boundary 
layer (which equates to the areas under each region), one can then demarcate the PDF into 
nonoverlapping regions. The nonoverlapping comes from the fact that the four discrete states are 
mutually exclusive and exhaustively collective to describe the entire microturbulent cycle. 

Similarly, one can estimate the amount of pressure fluctuation power contained in ejection, 
sweep, and overall burst by examining the wall pressure spectrum expressed in terms of inner 
variable dimensions. Figure 19 shows such an example. The wall pressure spectra were obtained 
by Blake (1970) and Schewe (1983) both in terms of wall units, but Schewe's spectral levels were 
normalized by the spectral level at zero frequency and had to be adjusted for comparison. As can 
be seen, the two data sets agree. From the microturbulence phenomenology discussed earlier, the 
mean burst frequency co «0.06, and for the burst event frequencies measured by Schewe (1983) 
co ~ 0.52. These two frequencies demarcate the relative ranges of the wall events from events 
occurring away from the wall, so that the power contained in each category of events can be 
estimated by integrating over relevant ranges as is indicated in the figure. 

4.6 SUMMARY OF MARKOV TRANSITION PROBABILITY METHODOLOGY 

As applied to characterizing and controlling wall layer turbulence, the methodology of the 
Markov transition probability comprises two major steps—estimating and predicting. The 
estimator step involves the following. At time 0 before the active control is turned on, the flow 
characteristics are measured in real time by flush-mounted hot-film probes and hydrophones. The 
wall shear stress and wall pressure fluctuation PDF histograms and spectra are generated by data 
processing. The histograms of the key parameters, such as the time between bursts and the mean 
and variance of wall shear stress and wall pressure fluctuation are determined, from which the 
dimensionless parameters are calculated. Then, the established wall turbulence phenomenology 
models are applied to estimate the mean time between bursts, burst duration, and spacing. The 
fractional time duration of each event as normalized by the average mean time between burst 
arrivals TB is determined. The arrival rate or frequency of each microturbulent event is estimated 
from the fractional time duration. The limiting state probabilities are then determined from the 
arrival rate, as was derived in a previous section. These limiting state probabilities are stored. 
After several TB periods, the limiting state probabilities are averaged and stored. 
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Figure 17. Demarcation of Microturbulent States on PDF 
of Wall Shear Stress Fluctuation 
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Figure 19. Normalized Smooth Wall Pressure Spectrum in Wall Units 

After several TB periods, the current state is estimated by comparing the shear stress and 
wall pressure fluctuations with the established PDFs. Then, solutions to the unsteady state 
probability equations are applied to estimate the state probability of the sensor location and 
determine the probability of current location within the next time step. The time step is limited by 
the lower bound of peak frequency of « 0.52, the upper bound of of « 0.06, and the desired 
accuracy. One rule of thumb is to resolve the highest frequency with six intermediate time steps, 
which translates into a stepping frequency of of » 3. Selection of the time step must balance the 
computational load and the accuracy desired. 

After the next state probabilities are obtained, a decision has to be made as to whether any 
external field is to be applied. This is the predictor step. For example, if the current state is low- 
speed streak and is moving toward sweep, then a normal Lorentz pressure gradient would be 
applied against the incoming high-momentum fluid motions. If the local state is currently ejection 
and is moving into breakup, then a decision would be made not to apply any Lorentz pressure 
gradient, thus letting the low-speed streaks reestablish themselves to maintain the low drag 
condition. If any external field is to be applied, the overall spatial pattern illustrated earlier in the 
wall layer turbulence phenomenology would be applied over the entire physical dimension where 
the external field can be activated. In other words, by using the well-established phenomenology, 
which has been measured, visualized, and published in the open literature, and which has been 
thoroughly scrutinized over a Reynolds number range, it is hopeful that only a finitely few sensors 
would be needed to diagnose the Markov state at the local site and allow the external field to be 
globally applied with the known spatial pattern. This approach has the potential to greatly reduce 
the burden on control. Of course, this assumes that our understanding of the turbulent boundary 
layer physics is further firmly established. 
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5. A METHOD FOR EMTC IMPLEMENTATION 

5.1 SPATIAL PATTERN OF ACTIVE EMTC CELLS 

From Emmon's spot configuration and microturbulent measurements, one finds that the 
spatial pattern of active EMTC cells is nearly invariant with speed, and only the turbulent burst 
spacing and frequency vary with flow speeds. Therefore, the EMTC strategy is to apply a fixed 
electrode-magnet pattern, with spacings determined by the highest speed of operation. As the 
speed increases, more and more EMTC cells are activated in opposing phase; when speed 
decreases, the polarity of electrodes is reversed to be in-phase over a larger spatial dimension to 
adjust to the decreasing spatial scales. The electrode-magnet configuration is depicted in figure 
20. 
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Microturbulent Events in the Wall Layer 
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5.2 TIME DELAY CONTROL OF ACTIVE EMTC CELLS 

Given the fixed spatial pattern of the EMTC cells and the known frequency of the burst 
events, one can selectively activate the electrodes whenever there is a mismatch of the applied 
fields with the naturally occurring events. These mismatches must be minimized to achieve the 
turbulence reduction. Using flush-mounted shear stress probes over several diagnostic areas, one 
can detect the occurrence of burst cycles via the power spectrum and shear stress histogram to 
determine the time mismatch by using a phase shift key lock circuit. This circuit can be applied to 
shift the phase until the measured burst frequency is a minimum. This time delay can be 
considered to be the time shift required to match the fixed pattern with the turbulence production 
burst cycle. 

5.3 FEEDBACK CONTROL 

The overall real-time active control is shown in figure 21. The sensors are flush-mounted 
shear stress and wall pressure probes. The optimal mounting configuration is to be determined 
later. Sensor outputs are bin-accumulated and spectrally analyzed using digital signal processors 
to produce PDF's and spectra; they are compared with the base natural state to determine the 
effects of the applied Lorentz fields. The applied fields can be modulated by the waveform and 
geometric pattern. The waveform is controlled by the intensity and duration of the applied 
electric field, and the geometric pattern is controlled by the activation of applied fields at different 
locations. 
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5.4 UNIQUE ADVANTAGES OF MARKOV CONTROL METHODOLOGY 

The Markov control methodology offers the following unique advantages: 

• It inhibits both the liftup ejections and the sweep simultaneously; therefore, it is more 
effective in terms of inhibiting turbulence production. This is analogous to the fact that 
active cancellation of beam vibration is more effective if restraining forces are applied 
simultaneously to the peak and trough of the beam displacement rather than to the peak 
only. 

• It is a more balanced force system, since no net force is imposed on the flow at any 
given time. 

• It is adaptive to the changing statistics of the turbulence state. The local turbulence 
state over the diagnosis areas can be detected, and adjusted accordingly, to both the 
speed and intensity required. 

• It requires minimum power input to inhibit the initiation of turbulence vice countering 
the vortex liftup after it has taken place. This feature has another advantage; because of 
the nonlinearity of the turbulence, an exact counterforce is not possible to obtain; 
however, a force to inhibit the initiation of vortex liftup can be determined more 
accurately; therefore, it may be optimal to apply minimum power rather than the exact 
amount of power to counter the microturbulent events. This is also necessary due to the 
fact that the EMTC device's spatial pattern is fixed; if the flow pattern is vastly different 
from that of the natural state, then the effectiveness of the EMTC device is greatly 
reduced. 

45 



6. SUMMARY AND CONCLUSIONS 

From a thorough overview of the published literature of wall layer turbulent events, a 
conceptual phenomenology of microturbulence, including spatial and temporal patterns of discrete 
microturbulent events, has been established. An overall, end-to-end, conceptual pictorial 
representation of the microturbulent events has been constructed. The spatial and temporal 
patterns of the events invite the concept of controlling microturbulence in such a way that the 
turbulence-producing events are inhibited while the low-speed streaks, which are considered to be 
the most stable flow configuration naturally ubiquitous in many turbulent flow conditions beyond 
the wall turbulence, are preserved. 

" The repeatable, quasi-periodic, microturbulent events form the deterministic basis on which 
the Markov process is formulated. For a natural turbulent boundary layer with zero pressure 
gradient, the simplified Chapman-Kolmogorov equations for the transition probability are solved 
for the Umiting probabilities. These limiting probabilities are related to the experimentally 
measured arrival rates of the ejection and sweep, which are Poisson processes. For a full four- 
state model (sweep, ejection, breakup, and low-speed streaks), four arrival rates are needed to 
completely describe the probability state solution; similarly, for a simplified three-state model 
(sweep, ejection, and low-speed streaks), three arrival rates are required. 

With the presence of externally applied electromagnetic fields, the limiting probabilities no 
longer apply and the full, unsteady, Chapman-Kolmogorov state probability equations must be 
solved. The solutions to these linear ordinary differential equations are composed of 
homogeneous and nonhomogeneous parts. The homogeneous part is of the exponential solution 
form, with the exponents being eigen-values of the transition probability matrix. The 
nonhomogeneous part results from the conservation condition of the state probabilities, i.e., they 
sum to one at all times. The nonhomogeneous solution can also be derived analytically in terms of 
the homogeneous solution. The initial conditions are satisfied by summing the three eigen- 
solutions for the four states or the two eigen-solutions for the simplified three-state model. The 
three-state simplification would be especially useful for high-speed applications where the spatial 
scales become the width of human hair and the temporal scales so short—into the acoustic 
frequency range—that the computational power required may exceed present capability. 

Lastly, a specific method for EMTC implementation that satisfies all of the known facts of 
microturbulence phenomenology has been proposed, and time delay and active control flow 
diagrams determined. 

The next step in this work should be to conduct an experiment using the step-by-step 
approach described above. The experiment must include both quantitative shear stress and wall 
pressure measurements and flow visualizations with pulsed laser fluorescent dye to determine the 
effects of the externally applied fields on the naturally occurring turbulence. It is expected that if 
turbulence is reduced the shear stress and wall pressure fluctuations will be reduced, the 
coherence of the low-speed streaks will increase, and the burst rate will decrease. Fine tuning of 
the applied external field intensity and waveforms could result in a turbulence control solution that 
would have wide engineering application and that would open a new chapter in multidisciplinary 
fluid mechanics. 
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